Math 115

Fall 2018

Lecture 11

$$
\begin{aligned}
& 3 a^{2}+b^{2}=c^{2} ? \\
& y=m x+b d=r t
\end{aligned}
$$

Feb 19-8:47 AM

> Some Review:
> seraph
> $x=-5 \rightarrow$ VoL.
> $y=3 \rightarrow H . L$.
> $3 x+4 y=12 \rightarrow$ SqL.
> $\left\{\left.\begin{array}{l}\text { in the Sam } \\ \text { Rectangular } \\ \text { System. } \\ 0 \quad x \mid y \\ \hline 0\end{array} \right\rvert\, 3\right.$.

Graph

$$
y=\left[\frac{3}{5}\right] x-2 \Leftrightarrow
$$

$y=\frac{-5}{3} x-2$ by
Slope -Int method in the Same Coordinate system.

$$
\frac{3}{5} \cdot \frac{-5}{3}=\frac{-15}{15}=-1
$$

Since the product of their slopes is -1 , then the lines must be perpendicular.

Since both slopes are equal, then these two lines are parallel.

Given $A(-7,3)$ and $B(5,-3)$ find

1) Distance from $A t_{0} B$.
a) Midpoint of $\overline{A B}=\sqrt{(-7-5)^{2}+(3-3)^{2}}$
2) Slope of $\stackrel{\rightharpoonup}{A B}=\sqrt{(-12)^{2}+6^{2}}$

$$
\begin{aligned}
& m\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad=\sqrt{144+36}=\sqrt{180} \\
& =m\left(\frac{-7+5}{2}, \frac{3+(-3)}{2}\right)=m\left(\frac{-2}{2}, \frac{0}{2}\right)=m(-1,0) \\
& m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{3-(-3)}{-7-5}=\frac{3+3}{-12}=\frac{6}{-12}=\frac{-1}{2}
\end{aligned}
$$

Always keep slope in reduced fraction, and keep - in the numerator.
stay away from decimals or mixed-numbers.

Draw a line that contains (4,-3) with

1) Slope $\frac{3}{4}$
2) Slope $\frac{-2}{5}$
3) Zero Slope \rightarrow H.L.
4) undefined slope V.L.

Graph \& Shade

$$
\left\{\begin{array}{l}
x \leq 4 \\
y>-2
\end{array}\right.
$$

in the Same rectangular Coordinate system.

Graph Er Shade

$$
\left\{\begin{array}{l}
y \leq \frac{-2}{5} x+4 \\
y>\frac{5}{2} x-4
\end{array}\right.
$$

in the Same rectangular coordinate system.

write $3 \vec{x}-2 y+\overrightarrow{7}<2 x+4 y-5$ in
slope-Int. form, then draw and shade. Isolate Y

$$
\begin{gathered}
-2 y-4 y<2 x-5-3 x-7 \\
-6 y<-x-12
\end{gathered}
$$

Divide by -6

$$
\begin{aligned}
\frac{-6}{-6} y & >\frac{-x}{-6}-\frac{12}{-6} \\
y & >\frac{1}{6} x+2
\end{aligned}
$$

How to find equation of a line that Contains the Point $\left(x_{1}, y_{1}\right)$ with

1) Zero slope $\longrightarrow H . L . \longrightarrow y$-only $\rightarrow y=y_{1}$
2) undefined slope \rightarrow VIL. $\rightarrow x-$ only $\rightarrow x=x_{1}$
3) Given slope \rightarrow use $\underbrace{\text { point-slope formula }}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

we have to simplify this.
find equation of a line that contains $(-4,3)$ with

1) Zero slope \rightarrow H.L. $\rightarrow y$-only $\rightarrow y=3$
2) undefined slope \rightarrow V.L. $\rightarrow x$-only $\rightarrow x=-4$
3) Slope $-2 . \rightarrow$ use Point-slope formula

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--4) \\
& \begin{array}{l}
y-3=-2(x+4) \\
y-3=-2 x-8
\end{array} \quad \mapsto y=-2 x-8+3 \\
& y=m x+b \rightarrow \text { Slope - Int form } \\
& 2 x+y=-5 \\
& A x+B y=C \text { Standard form }
\end{aligned}
$$

Nov 7-7:35 AM
find equation of a line that contains $(4,-2)$ with

1) $m=0 \rightarrow$ H.L $\rightarrow y$-only $\rightarrow y=-2$
2) No Slope \rightarrow V.L. $\rightarrow x$-only $\rightarrow x=4$
3) Slope $\frac{-1}{4}$. \rightarrow use Point-Slope formula

$$
\begin{array}{ll}
\\
y+2=\frac{-1}{4}(x-4) \\
y+2=\frac{-1}{4} x+\frac{1}{4} \cdot 4 \\
y+2=-\frac{1}{4} x+1 \\
y=\frac{-1}{4} x+1-2
\end{array} \quad \begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-1}{4}(x-4) \\
& y=\frac{-1}{4} x-1 \\
& \text { Slope-InI form } \\
& \text { LCD }=4 \\
& 4 y=-x-4 \\
& \text { oo } x+4 y=-4 \text { Standard } \\
& \text { form }
\end{aligned}
$$

find eqn of a line that contains the origin with
, 1) Zero slope
2) Undefined slope

$$
\text { H.L } \rightarrow y \text {-only } \rightarrow y=0
$$

$\sqrt{3}$) $m=0$
5) $m=\frac{3}{5}$
6) $m=\frac{-5}{3}$
$y-0=\frac{3}{5}(x-0)$

$$
y=\frac{3}{5} x \text { Slope. Int form }
$$

$$
5 y=3 x
$$

$$
-3 x+5 y=0
$$

$$
3 x-5 y=0 \text { Standard form }
$$

$$
\begin{gathered}
y-0=\frac{-5}{3}(x-0) \\
\begin{array}{c}
y=\frac{-5}{3} x \text { slope }- \\
\text { Int } \\
\text { Form }
\end{array} \\
3 y=-5 x
\end{gathered}
$$

standard form:

Nov 7-7:48 AM

How to find equation of a line that contains two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

1) find slope $\rightarrow m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ or $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
2) Choose one of the points and slope now refer to earlier method.
ex: Find egn of a line that contains $(4,3)$ and $(0,2)$.

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{3-2}{4-0}=\frac{1}{4}
$$

Now $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{array}{r}
y-2=\frac{1}{4}(x-0) \begin{array}{l}
4 y=x+8 \\
-x+4 y=8 \\
x-4 y=-8
\end{array}
\end{array}
$$

find the equation of a line that contains

$$
\begin{array}{lr}
(-3,0) \text { and }(1,-5) & y-y_{1}=m\left(x-x_{1}\right) \\
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & y-0=\frac{-5}{4}(x-3) \\
m=\frac{0-(-5)}{-3-1}=\frac{5}{-4}=\frac{-5}{4} & y=\frac{-5}{4}(x+3) \\
\text { LCD }=4 & y=\frac{-5}{4} x-\frac{15}{4} \\
4 y=-5 x-15 & \text { slope -Int } \\
0 & \text { form } \\
5 x+4 y=-15 & \text { standard form }
\end{array}
$$

find equation of a line that contains $(5,-2)$ and

$$
\begin{aligned}
& \text { 1) }\left(\frac{3,-2)}{2}(5,-2) \quad y=-2\right. \\
& \text { 2) }(5,4)(5,-2) \\
& m=\frac{4-(-2)}{5-5}=\frac{6}{0} \\
& m=\frac{-2-(-2)}{-3-5}=\frac{0}{-8}=0 \\
& \text { undefined } \\
& \text { 3) }(4,0)(5,-2) \\
& x=5 \\
& m=\frac{0-(-2)}{4-5}=\frac{2}{-1}=-2 \\
& \begin{array}{l}
y-0=-2(x-4) \\
y=-2 x+8
\end{array} \rightarrow 2 x+y=8
\end{aligned}
$$

find eqn of a line that contains $(3,-4)$ and is parallel to the line $y=2 x+1$

$$
\begin{aligned}
& y-y_{1}=\sqrt[m]{m}\left(x-x_{1}\right) \\
& y--4=2(x-3) \\
& y+4=2 x-6 \quad \square y=2 x-10 \\
& y=2 x-6-4
\end{aligned}
$$

Find eqn of a line that contains $(-3,4)$ and it is parallel to $y=-\frac{4}{3} x+6$.

$$
\begin{aligned}
& y-y_{1}=m_{1}^{8}\left(x-x_{1}\right) \\
& y-4=\frac{-4}{3}(x--3) \\
& y-4=\frac{-4}{3}(x+3) \\
& y-4=\frac{-4}{3} x-\frac{4}{3} \cdot 3 \\
& y-4=\frac{-4}{3} x-4
\end{aligned} \quad \begin{array}{r}
y=\frac{-4}{3} x-4+4 \\
y=-\frac{4}{3} x \\
3 y=-4 x \\
4 x+3 y=0
\end{array}
$$

Find equation of a line that contains $(0,-2)$ and it is perpendicular to

$$
\begin{aligned}
& y=\underbrace{\frac{3}{4}} x+4 . \underbrace{y-y_{1}}_{\text {-Reciprocal }}=\frac{m}{m}\left(x-x_{1}\right) \\
& -\frac{4}{3}=\frac{-4}{3} \\
& y+2=\frac{-4}{3} x \\
& y=\frac{-4}{3} x-2 \quad \begin{array}{l}
3 y=-4 x-6 \\
3 y+4 x=-6
\end{array} \int \sqrt{4 x+3 y=-6}
\end{aligned}
$$

Nov 7-8:32 AM
find eqn of a line that contains the origin and it is perpendicular to the line

$$
\begin{array}{rlrl}
y= & =\frac{-1}{2} x+3 . & y-y_{1}=m\left(x-x_{1}\right) \\
& - \text { Reciprocal } & y-0=2(x-0) \\
& -\frac{-2}{1}=2 \quad & y=2 x & \text { slope-Int. } \\
- & & \\
& & 2 x+y=0 \\
& 2 x-y=0 & \text { standard form. }
\end{array}
$$

